

THE WELLNESS WIZARDS

UC Davis Biomedical Engineering - Q@AS

Rishitha Sivaprabhu, Kate Scott, Isaac Albrecht, Carson Hicks

TABLE OF CONTENTS $\mathbf{01}$ 02 ΕT **PROBLEM AND OUR JOURNEY ANALYSIS CHOSEN MVP** 06 05 04 **USER** REGULATORY COMMERCIALIZATION **WORKFLOW** PATHWAY **PROCESS**

01 OUR TEAM AND JOURNEY

OUR TEAM

Carson Hicks

cahicks@ucdavis.edu

www.linkedin.com/in/ carsonehicks

Isaac Albrecht

isalbrecht@ucdavis.edu

www.linkedin.com/in/ isaac-albrecht-8005b11a2

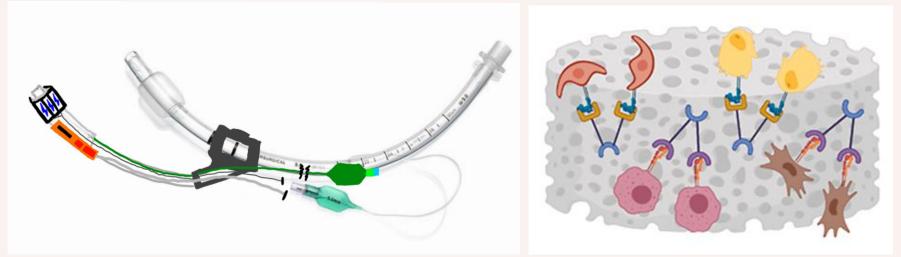
Kate Scott

kjscott@ucdavis.edu

www.linkedin.com/in/ kathleenjscott/

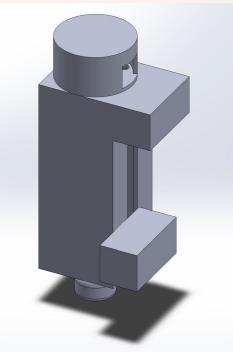
Rishitha Siva

risiva@ucdavis.edu


www.linkedin.com/in/ rishithasiva

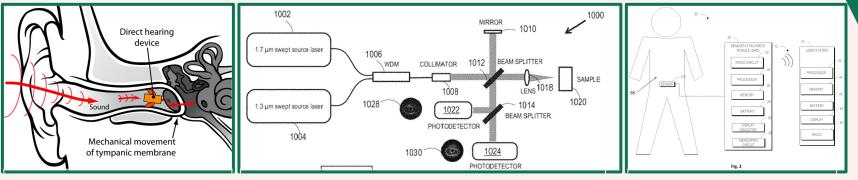
OUR CLINICAL JOURNEY

CLINICAL NEEDS SOLUTIONS


ECG and pulse oximeter integrated endoesophageal tube

Ligand–Loaded Demineralized Bone Matrix for Enhancing Artificial Bone Grafts

CLINICAL NEEDS SOLUTIONS



Robotic Laparoscope to improve laparoscopic surgeries

Bone alignment and tendon stretching for ORIF wrist surgeries

OUR PAST MVPS

Direct Drive Hearing Aid

Con:

- Complicated

and physician-

dependant use

Pros:

- Sharper intravascular

imaging to diagnose

atherosclerosis

- Fewer invasive

procedures

Pro:

- Avoids feedback and occlusion

High Resolution OCT Imaging Device

Cons:

- Uncertainties whether this device would improve treatment

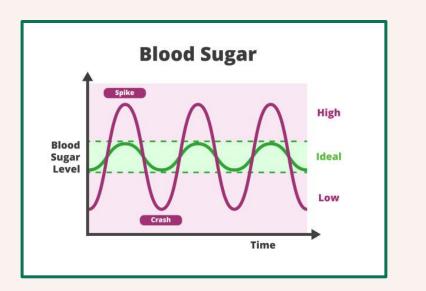
Fetal Movement Sensor

Cons:

- Wearable. - Efficacy noninvasive concerns device that - Challenging monitor both to get fetal and approved by mother's insurance

Pros:

health

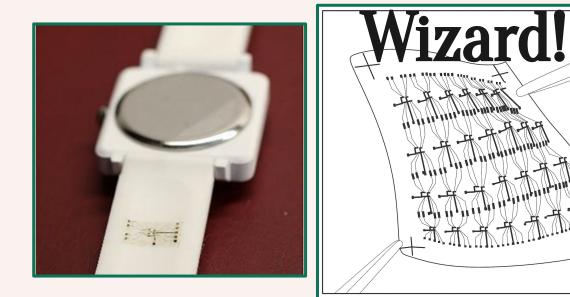

Interviews: Each week we interviewed patients, medical providers, and industry professionals to gather information on the feasibility and impact of our MVP.

02 PROBLEM AND CHOSEN MVP

PROBLEM DESCRIPTION

There is a need for a <u>non-invasive</u> method of monitoring glucose that is both <u>continuous</u> and <u>accurate</u>.

- Current accurate methods of measuring glucose are invasive
- State-of-the-art continuous glucose monitors (CGMs) are invasive and inaccurate


STATE-OF-THE-ART GLUCOSE MONITORS

MVP – MICROFLUIDIC GLUCOSE MONITOR

The Glucose

MVP – UNIQUE SELLING POINTS

- 1. Non-Invasive sampling: A de novo method of reading blood sugar levels. Eliminates the need for finger pricks and invasive CGMs
- 2. High Sensitivity: Extremely wide detection range spanning 5 orders of magnitude with a detection limit as low as 10 nanomolar
- 3. Flexible and Durable: Fabricated on an ultra-flexible substrate, allowing for mechanical robustness and conformability to highly dynamic areas
- 4. Addresses a large market: Targets Type 2 diabetes patients, a prevalent global health issue with significant market potential. The device can also be utilized as a wellness device for losing weight and improving health

MVP – THE PATENT

US11813057B2

United States

📄 Download PDF 🛛 🝳 Find Prior Art 🔉 Similar

Inventor: Chongwu Zhou, Mohammed R. Amer, Ahmad N. Abbas, Qingzhou Liu, Mervat Alharbi

Current Assignee : Jeddah, University of , University of California , University of Southern California USC

Worldwide applications

2019 - <u>US</u>

Application US16/699,314 events ③

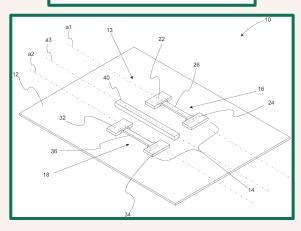
- 2019-11-29 Application filed by Jeddah, University of, University of California, University of Southern California USC
- 2019-11-29 Priority to US16/699,314
- 2021-06-03 Publication of US20210161435A1
- 2023-02-23 Publication of US20230060118A9
- 2023-07-25 Assigned to THE REGENTS OF THE UNIVERSITY OF CALIFORNIA ®
- 2023-07-25 Assigned to UNIVERSITY OF SOUTHERN CALIFORNIA ®
- 2023-09-01 Assigned to University of Jeddah @
- 2023-11-14 Application granted
- 2023-11-14 Publication of US11813057B2

Status
Active

2041-04-08 • Adjusted expiration

What is claimed is:

1. A biosensor comprising:


a flexible substrate; and

at least one field effect transistor assembly comprising a pair of flexible field effect transistors deposited onto the flexible substrate, each pair of flexible field effect transistors including:

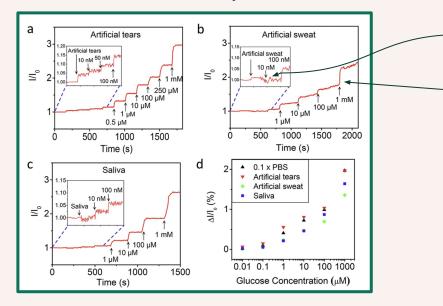
a first electrode assembly including a first source electrode, a first drain electrode, and a first metal oxide channel, the first metal oxide channel contacting the first source electrode and the first drain electrode;

a second electrode assembly including a second source electrode, a second drain electrode, and a second metal oxide channel, the second metal oxide channel contacting the second source electrode and the second drain electrode; and

a malleable gate electrode deposited onto the flexible substrate, the malleable gate electrode interposed between the first electrode assembly and the second electrode assembly.

- Patent was filed in November 2023
- Patent is solely for the novel technology relating to glucose biosensing through sweat
- Logistics of commercial product is still under investigation, such as biocompatible substrate and adhesive

VALUE PROPOSITIONS


Can be used for health and wellnessNon-diabetic and pre-diabetic patients

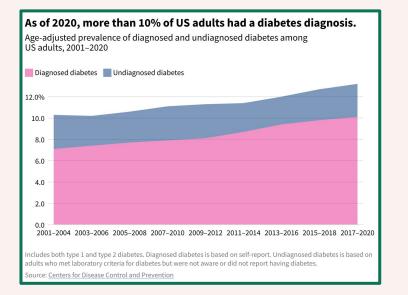
- Non-invasive and continuous device
- Detects changes in glucose in real-time

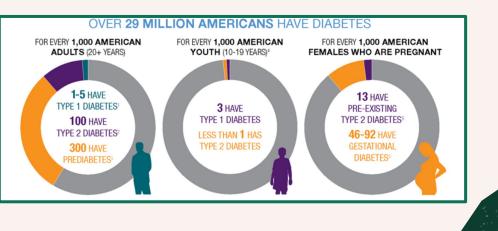
DATA ACCURACY

Sensitivity:

- Can detect changes >10 nM glucose
- Difference in voltage seen in graph
- Multiple different inputs

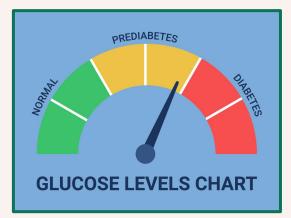
03 MARKET ANALYSIS




In the United States, 1.2 MILLION

people are diagnosed with diabetes annually

DIABETES PREVALENCE

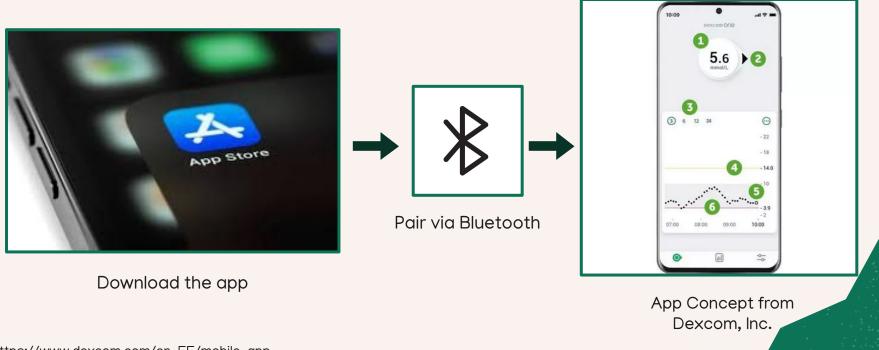


OUR TARGET MARKET

Type 2 Diabetes

Prediabetes

04 USER WORKFLOW



Online Vendors

Off the Shelf

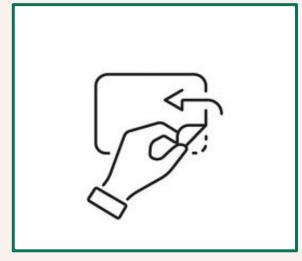
USER WORKFLOW – SETUP

https://www.dexcom.com/en-EE/mobile-app

USER WORKFLOW – APPLICATION

Wipe application area with included alcohol wipe

Peel adhesive backing from device

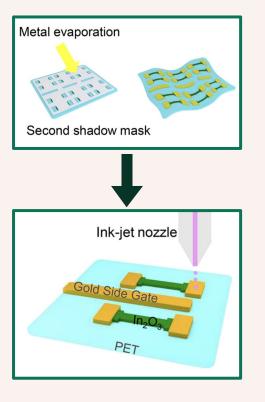

Place on application area

USER WORKFLOW – MONITORING



Eat, Exercise, etc.

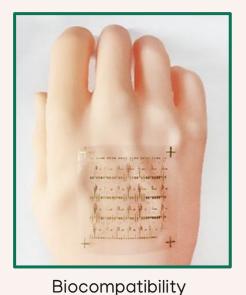
USER WORKFLOW – REMOVAL

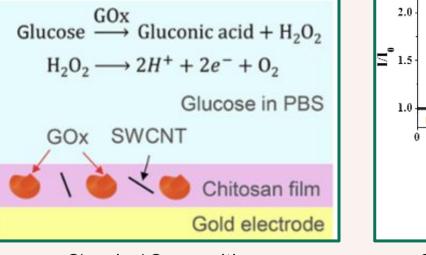


Device is peeled off after approximately 2 weeks

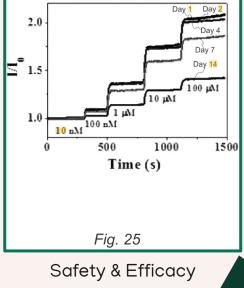
User workflow is repeated

MANUFACTURING – PRACTICALITY




- Simple, two-step fabrication process
- Scalable fabrication and made with standardized materials
- Use of existing technologies like inkjet printing
- Potential for *high-volume production*
- Integration potential with existing smart devices

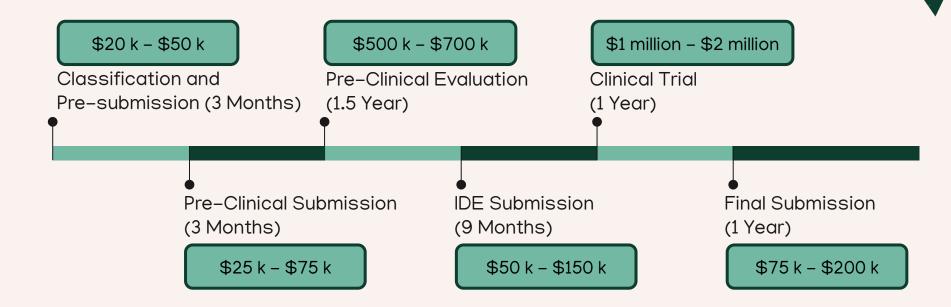
05 REGULATORY PATHWAY



PRECLINICAL EVALUATION

Chemical Composition

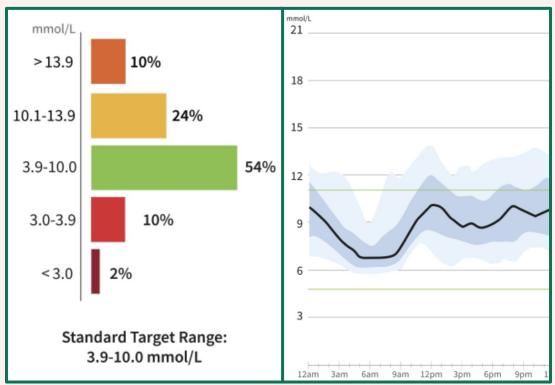
PRECLINICAL EVALUATION


Manufacturing and Packaging Process

Shelf Life

FDA PATHWAY

Total: \$1.7 - \$3.2 million over 5 years


06 COMMERCIALIZATION PROCESS

APP DEVELOPMENT

Our app is an important part of our device. It is the main way people interact with our device.

- Live data, visual graphs
- Generates alerts based on pre-set thresholds
- Store historical data for analysis, trends
- Intuitive interface

The development will cost \$10,000 - \$50,000 for a professional fully functional app.

BUY-IN SUPPORT

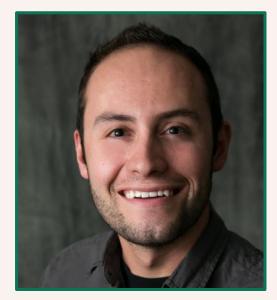
Patients

Medical Providers

Insurance Companies

FDA

LOCAL PARTNERSHIPS


Dr. Hyoyoung Jeong

Wearable Bio-electronics for Health Monitoring, Diagnostics, and Therapeutics

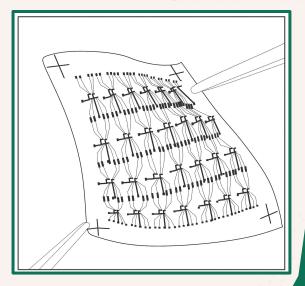
UCD Medical Center

Department of Internal Medicine: Endocrinology, Diabetes and Metabolism

Steven Lucero TEAM Laboratory Manager, Prototyping and Design Lab

MATERIAL COST PER DEVICE

Material:	Purpose:	<u>Cost per device:</u>
Polyethylene terephthalate (PET)	Substrate	\$0.10 - \$0.50
Indium Oxide (In2O3)	Nanoribbons	\$0.50 - \$1.00
Gold	Electrodes	\$1.00 - \$2.00
Chitosan	Suspension	\$0.10 - \$0.30
Glucose Oxidase	Enzyme	\$0.50 - \$1.00
Carbon Nanotubes	Microfluidics	\$0.10 - \$0.30


Total Cost per Device: \$2.30 - \$5.10

COMMERCIALIZATION COST

Phase:	Estimated Cost:	<u>Timeline:</u>
<i>Marketing Preparation</i> - Branding and strategy development - Regulatory-approved marketing materials	\$45,000-\$125,000	3–6 months
<i>Product Launch and Initial Marketing</i> - Product launch events - Digital marketing campaign - Key Opinion Leader (KOL) engagement	\$125,000-\$450,000	6-12 months
<i>Sustained Marketing (1 Year)</i> - Advertising in medical journals and platforms - Customer feedback and marketing campaigns	\$40,000-\$150,000 annually	Ongoing

THANK YOU

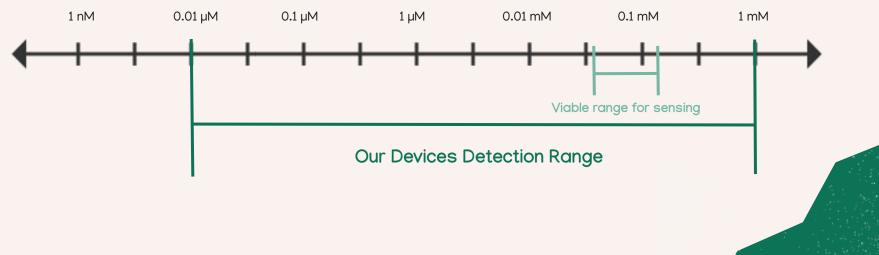
CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

WORK CITED

Liu, Q., Liu, Y., Wu, F., Cao, X., Li, Z., Alharbi, M., Abbas, A. N., Amer, M. R., & Zhou, C. (2017). Nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids. ACS Nano. <u>https://bpb-us-w1.wpmucdn.com/sites.usc.edu/dist/6/111/files/2018/03/102492-1vgq5u1.pdf</u>

Zhang, Y., Zhang, J., & Wang, W. (2022). Recent advances in wearable biosensors for non-invasive glucose monitoring. Sensors, 22(2), 638. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781973/#B30-sensors-22-00638</u>

Smith, J., & Doe, A. (2023). Advances in continuous glucose monitoring systems: A review of current and emerging technologies. Journal of Diabetes Science and Technology. <u>https://www.sciencedirect.com/science/article/pii/S2666523923000582</u>


Penn Medicine. (n.d.). Type 2 diabetes: Symptoms & treatment. <u>https://www.pennmedicine.org/for-patients-and-visitors/patient-information/conditions-treated-a-to-z/type-2-diabetes#:~:t</u> <u>ext=Most%20people%20with%20type%202,before%20meals%2C%20and%20at%20bedtime</u>

Mayo Clinic Staff. (n.d.). Blood sugar testing: Why, when and how. Mayo Clinic. <u>https://www.mayoclinic.org/diseases-conditions/diabetes/in-depth/blood-sugar/art-20046628#:~:text=Your%20healthcare%20</u> <u>professional%20may%20suggest,after%20and%20sometimes%20during%20exercise</u>

Northwestern Medicine. (n.d.). How do continuous glucose monitoring systems (CGMS) work? <u>https://www.nm.org/healthbeat/healthy-tips/How-Do-Continuous-Glucose-Monitoring-Systems-CGMS-Work#:^{*}:text=How%20 Do%20Continuous%20Glucose%20Monitoring%20Systems%20Work?</u>

DETECTION VIABILITY

According to a research article, "The concentration of *glucose* in human sweat is from *0.06–0.2 mM* and corresponds to *3.3–17.3 mM* in BG"

https://pmc.ncbi.nlm.nih.gov/articles/PMC8781973/